
Comparative study of field of view algorithms for 2D grid based worlds
v1.2

J.C.Wilk, February 2009

Contents
1.Introduction...1
2.Gameplay study...2

2.1.Pillar behavior...2
2.2.Corner peeking..4
2.3.Diagonal walls..6
2.4.Symmetry..7
2.5.Gameplay summary..8

3.Performance study...9
4.Summary..12
5.References...13
6.Appendix...14

6.1.Outdoor 20x20..14
6.2.Outdoor 100x100..15
6.3.Outdoor 600x600..16
6.4.Indoor 20x20...17
6.5.Indoor 40x40...18
6.6.Indoor 80x80...19
6.7.Indoor symmetry...20
6.8.Outdoor symmetry..21

1. Introduction
Computing field of view is a frequent problem in video games. It consists of the determination of which part of the
world is visible from a certain position. This paper focus on 2D grid based worlds, in other words, worlds represented
by a 2D grid of square cells. This type of worlds can be found in a range of video games, including but not limited to
2D isometric games and text console based games like roguelikes.

While there are lots of different algorithms to solve this problem, not much has been written about the difference
between those algorithms, in term of gameplay or speed.

This is not a comprehensive study of all available algorithms. Instead, I will focus on following popular or innovative
algorithms :

• basic raycasting [BASIC]
• diamond raycasting [DIAMOND]
• recursive shadowcasting [SHADOW]
• precise permissive fov [PERMISSIVE]
• digital fov [DIGITAL]

Note that basic raycasting alone generates too many artifacts to be really usable. The algorithm tested here use a post-
processing step to remove most wall lighting artifacts.

In this version of the study, permissive has been replaced by an enhanced version of the algorithm, from the same
author, with a variable permissiveness parameter. This parameter can take values in the range 0-8, 0 being the less
permissive and 8 being equivalent to the standard precise permissive algorithm.

All tests below are done using the C++ wrapper for the Doryen library [LIBTCOD] and the fov algorithms
implementations it contains. Note that digital fov is no more in the library, but its source code is still on libtcod's svn
repository.

2. Gameplay study
2.1. Pillar behavior
We call a wall cell surrounded with empty cells a pillar. First, let's see how the fov looks when the viewer's cell is
adjacent to the pillar :

BASIC SHADOW DIAMOND, DIGITAL

PERMISSIVE
DIAMOND and DIGITAL result in a shadow limited to a single line, which makes it almost impossible for a creature to
sneak from the east side of the map to the @ position without being noticed.
PERMISSIVE offers any shadow angle. In particular, PERMISSIVE0 has the same shadow angle as SHADOW.
PERMISSIVE2 the same as BASIC.

Now let's see the behavior when the viewer is a few cells away from the pillar :

BASIC DIAMOND SHADOW DIGITAL

PERMISSIVE

BASIC and SHADOW still have a triangular shadow, but the cells near the pillar are now completely in the field of
view.

DIAMOND still has a shadow limited to a single line.

DIGITAL don't even have a line shadow.

Once gain PERMISSIVE is very similar to SHADOW/BASIC with low permissiveness and is equivalent to DIGITAL
with maximum permissiveness.

The conclusion is that if you want to use pillars for stealth gameplay, you have to choose either BASIC or SHADOW or
PERMISSIVE with low permissiveness. You can still use the other algorithms provided you use 2x2 pillars instead of
single cell pillars. Not that no algorithm provides a good looking shadow.

2.2. Corner peeking
Corner peeking involves seeing a corridor when you're standing at a T junction.

BASIC SHADOW DIAMOND, DIGITAL

PERMISSIVE

BASIC and SHADOW don't allow corner peeking. You have to step into the corridor to be able to see it. The other
algorithms allow corner peeking.

Now let's see the opposite case. If you're in the corridor, will you be able to see someone hiding in the T junction ?

When on a red cell, you don't see him. When on a blue cell, you see him.

BASIC DIAMOND SHADOW, PERMISSIVE, DIGITAL

For BASIC, the cell might or might not be visible, depending on the viewer position in the corridor. Most of the time,
it's not in fov, but at certain position where a ray pass exactly through the T junction cell, it is in fov. This is clearly not
an acceptable behavior.

DIAMOND has the better behavior here : the cell is not visible until the viewer is really close to the junction.

For other algorithms, the cell is always visible, which is counter-intuitive, but acceptable.

2.3. Diagonal walls
Most roguelikes allow diagonal movements. We can then expect the field of view to go through diagonal walls too.

BASIC DIAMOND SHADOW DIGITAL

PERMISSIVE

BASIC and some of the PERMISSIVE have good result.

DIAMOND completely blocks the field of view, which might be a real issue if your game allows diagonal movement.
Also note that if you want the field of view to be blocked by diagonal walls, you'll have to tweak any algorithm except
DIAMOND and PERMISSIVE0.

SHADOW through diagonal walls is limited to a thick line, which is not very natural.

PERMISSIVE8 and DIGITAL have a 90° field of view through the wall, which is fine.

2.4. Symmetry
The measures are done on following maps :

• “Outdoor” maps (empty maps with random 1x1 obstacles) : 100x100
• “Indoor” maps (random cave levels using algorithm [BSPDUNGEON]) : 40x40

Symmetry is measured by calculating a field of view F0 on a random map from a random position P0. Then, for each
cell Pi in F0, we calculate the field of view Fi from the position Pi and check that P0 is inside Fi. If not, we increase an
error counter. We do this for several random maps and get the average number of error per map cell.

Green cells have no symmetry error.

Orange cells have less than 1% symmetry errors.

Red cells have more than 1% symmetry errors.

Algorithm Error / cell – indoor
(%)

Error / cell – outdoor
(%)

BASIC 0.75 4.4

SHADOW 0.93 6.9

DIAMOND 0.82 6.5

PERMISSIVE 0 2.14 10.95

PERMISSIVE 1 2.06 10.5

PERMISSIVE 2 1.9 9.65

PERMISSIVE 3 1.39 8.1

PERMISSIVE 4 1.12 7

PERMISSIVE 5 0.84 4.1

PERMISSIVE 6 0.61 2.25

PERMISSIVE 7 0.16 0.3

PERMISSIVE 8 0 0

DIGITAL 0 0

Conclusion :

• Obviously, symmetric algorithms have no errors.

• On permissive, symmetry is inversely proportional to permissiveness. The symmetry is really bad with
permissiveness <= 4.

• All other algorithms have equivalent error rates, acceptable for indoor, but not for outdoor. The outdoor error
rate is high enough to be a gameplay issue.

• Error rate is higher in outdoor maps

2.5. Gameplay summary

1x1 pillar
near

1x1 pillar
away

Corner
peeking

Inverted
corner

peeking

Diagonal
walls

Symmetry
indoor

Symmetry
outdoor

BASIC

DIAMOND

SHADOW

PERMISSIVE0

PERMISSIVE1

PERMISSIVE2

PERMISSIVE3

PERMISSIVE4

PERMISSIVE5

PERMISSIVE6

PERMISSIVE7

PERMISSIVE8

DIGITAL

Gameplay ranking :

BASIC 3 2 2

PERMISSIVE3 3 2 2

PERMISSIVE2 3 2 2

PERMISSIVE1 3 2 2

PERMISSIVE8 3 1 3

DIGITAL 3 1 3

SHADOW 2 3 2

PERMISSIVE0 2 3 2

DIAMOND 1 3 3

PERMISSIVE7 1 3 3

PERMISSIVE6 1 4 2

PERMISSIVE5 1 4 2

PERMISSIVE4 1 4 2

Conclusions :
• there is no perfect algorithm amongst the ones observed
• each algorithm has its own weakness
• the resulting ranking is rather arbitrary. You should carefully check every algorithm features to see if it can fit

your game.

3. Performance study
The measures are done on following maps :

• Empty maps (worst case) : 600x600, 100x100, 20x20
• Maps full of wall (best case) : 600x600, 100x100, 20x20
• “Outdoor” maps (empty maps with random 1x1 obstacles) : 600x600, 100x100, 20x20
• “Indoor” maps (random cave levels using algorithm [BSPDUNGEON]) : 80x80, 40x40, 20x20

For each map type, we run 50 tests on 50 different random maps (for the worst/best cases, there's only one map for all
50 tests). For each random map, we run a number (between 10 and 2000 depending on the current test's average speed)
of fov computations from different positions in the map. Each algorithm runs through the exact same set of maps/viewer
positions. The cumulative time is calculated for each algorithm and the average time per computation is deduced.

The absolute speed values are not really significant. More important is the difference of speed between two algorithms
on the same map and the same computer.

The color code uses following convention :
• algorithms with total time lower than 2x the fastest are green
• algorithms with total time higher than 5x the fastest are red
• the others are orange

Empty map 600x600
(µs)

100x100
(µs)

20x20
(µs)

BASIC 29000 589 35

SHADOW 16000 383 30

DIAMOND 91000 925 58

PERMISSIVE 0 27439 606 37

PERMISSIVE 1 27039 604 36

PERMISSIVE 2 27399 607 37

PERMISSIVE 3 27160 600 37

PERMISSIVE 4 27140 618 37

PERMISSIVE 5 26900 607 36

PERMISSIVE 6 26879 585 36

PERMISSIVE 7 27059 606 37

PERMISSIVE 8 26980 606 37

DIGITAL 148000 3958 166

Full map 600x600
(µs)

100x100
(µs)

20x20
(µs)

BASIC 2507 101 13

SHADOW 485 21 3

DIAMOND 6086 155 11

PERMISSIVE 0 893 111 10

PERMISSIVE 1 736 113 10

PERMISSIVE 2 731 110 10

PERMISSIVE 3 721 111 10

PERMISSIVE 4 750 111 10

PERMISSIVE 5 731 112 10

PERMISSIVE 6 726 111 10

PERMISSIVE 7 736 111 10

PERMISSIVE 8 747 111 11

DIGITAL 639 106 22

Outdoor map 600x600
(µs)

100x100
(µs)

20x20
(µs)

BASIC 9000 242 32

SHADOW 48000 309 35

DIAMOND 19000 318 48

PERMISSIVE 0 9989 280 34

PERMISSIVE 1 10777 303 36

PERMISSIVE 2 11594 320 36

PERMISSIVE 3 12093 336 38

PERMISSIVE 4 12564 338 38

PERMISSIVE 5 13043 354 39

PERMISSIVE 6 13621 358 40

PERMISSIVE 7 14133 367 40

PERMISSIVE 8 14563 375 41

DIGITAL 206000 4255 272

Indoor map 80x80
(µs)

40x40
(µs)

20x20
(µs)

BASIC 93 51 26

SHADOW 38 32 21

DIAMOND 130 67 40

PERMISSIVE 0 99 53 31

PERMISSIVE 1 102 55 32

PERMISSIVE 2 104 56 32

PERMISSIVE 3 104 56 33

PERMISSIVE 4 103 58 33

PERMISSIVE 5 105 58 35

PERMISSIVE 6 106 59 33

PERMISSIVE 7 107 59 36

PERMISSIVE 8 107 60 36

DIGITAL 440 277 135

Speed ranking :

SHADOW 11 0 1

PERMISSIVE 8 3 1

BASIC 8 3 1

DIAMOND 3 6 3

DIGITAL 1 1 10

Conclusions :
• with usual visible map size in games (between 20x20 and 40x40), any algorithm but DIGITAL is fast enough

for most usages.
• SHADOW is the fastest on indoor maps and the best overall choice for performances.
• BASIC is the fastest on outdoor maps
• DIGITAL is way slower than the others.

4. Summary

Gameplay Speed Complexity

To understand To implement

BASIC 3 2 2 8 3 1 * *

PERMISSIVE3 3 2 2 8 3 1 ** ***

PERMISSIVE2 3 2 2 8 3 1 ** ***

PERMISSIVE1 3 2 2 8 3 1 ** ***

PERMISSIVE8 3 1 3 8 3 1 ** ***

DIGITAL 3 1 3 1 1 10 *** ***

SHADOW 2 3 2 11 0 1 * *

PERMISSIVE0 2 3 2 8 3 1 ** ***

DIAMOND 1 3 3 3 6 3 ** **

PERMISSIVE7 1 3 3 8 3 1 ** ***

PERMISSIVE6 1 4 2 8 3 1 ** ***

PERMISSIVE5 1 4 2 8 3 1 ** ***

PERMISSIVE4 1 4 2 8 3 1 ** ***

Conclusions :

• There is no big winner, but SHADOW and BASIC are particularly adapted to most FOV usages except if
symmetry is mandatory. They also happen to be the simplest to understand and implement.

• The new permissive fov is pretty handy and can adapt to any usage, but no permissiveness level gives perfect
results and the symmetry gets really bad for low permissiveness.

• While having a reputation for being the slowest, BASIC is indeed one of the fastest.

• While it does not rank very well in this study, DIAMOND has some very interesting and unique features and
it's definitely worth digging more into it to see if it can be improved.

• The final conclusion is that there is still lot of room for improvement in FOV algorithms, especially on the
gameplay side...

5. References
1. [BASIC] J.C.Wilk, Sep 2007. Piece of cake visibility determination algorithm :

http://jice.nospam.googlepages.com/visibilitydetermination
2. [DIAMOND] Modeling Rays for Line of Sight in an Object-Rich World :

http://www.geocities.com/temerra/los_rays.html
3. [SHADOW] Björn Bergström, 2001. FOV using recursive shadowcasting :

http://roguebasin.roguelikedevelopment.org/index.php?title=FOV_using_recursive_shadowcasting
4. [PERMISSIVE] Jonathon Duerig. Precise Permissive Field of View :

http://roguebasin.roguelikedevelopment.org/index.php?title=Precise_Permissive_Field_of_View
Enhanced version :
http://groups.google.com/group/rec.games.roguelike.development/msg/b77fe6999651d023

5. [DIGITAL] Digital field of view : http://roguebasin.roguelikedevelopment.org/index.php?
title=Digital_field_of_view

6. [LIBTCOD] J.C.Wilk, 2007-2009. The Doryen library : http://thedoryenlibrary.appspot.com
7. [BSPDUNGEON] J.C.Wilk, Sep 2007. Basic dungeon generation :

http://jice.nospam.googlepages.com/basicdungeongeneration

http://jice.nospam.googlepages.com/visibilitydetermination
http://groups.google.com/group/rec.games.roguelike.development/msg/b77fe6999651d023
http://roguebasin.roguelikedevelopment.org/index.php?title=Precise_Permissive_Field_of_View
http://roguebasin.roguelikedevelopment.org/index.php?title=Precise_Permissive_Field_of_View
http://jice.nospam.googlepages.com/basicdungeongeneration
http://thedoryenlibrary.appspot.com/
http://roguebasin.roguelikedevelopment.org/index.php?title=Digital_field_of_view
http://roguebasin.roguelikedevelopment.org/index.php?title=Digital_field_of_view
http://roguebasin.roguelikedevelopment.org/index.php?title=FOV_using_recursive_shadowcasting
http://www.geocities.com/temerra/los_rays.html

6. Appendix
Some nifty screenshots.

6.1. Outdoor 20x20

BASIC DIAMOND PERMISSIVE

DIGITAL SHADOW

6.2. Outdoor 100x100

BASIC DIAMOND
PERMISSIVE

DIGITAL SHADOW

6.3. Outdoor 600x600

BASIC DIAMOND PERMISSIVE

DIGITAL SHADOW

6.4. Indoor 20x20

BASIC DIAMOND PERMISSIVE

DIGITAL SHADOW

6.5. Indoor 40x40

BASIC DIAMOND PERMISSIVE

DIGITAL SHADOW

6.6. Indoor 80x80

BASIC DIAMOND PERMISSIVE

DIGITAL SHADOW

6.7. Indoor symmetry
Red cells indicate cells visible by the player but that cannot see the player.

Blue cells indicate cells not visible by the player but that can see the player.

BASIC DIAMOND SHADOW

PERMISSIVE

6.8. Outdoor symmetry
Red cells indicate cells visible by the player but that cannot see the player.

BASIC DIAMOND SHADOW

PERMISSIVE

	1. Introduction
	2. Gameplay study
	2.1. Pillar behavior
	2.2. Corner peeking
	2.3. Diagonal walls
	2.4. Symmetry
	2.5. Gameplay summary

	3. Performance study
	4. Summary
	5. References
	6. Appendix
	6.1. Outdoor 20x20
	6.2. Outdoor 100x100
	6.3. Outdoor 600x600
	6.4. Indoor 20x20
	6.5. Indoor 40x40
	6.6. Indoor 80x80
	6.7. Indoor symmetry
	6.8. Outdoor symmetry

